Publications
                        
                        * = equal contribution.
                        
                        
                            Personalized Reasoning: Just-in-time personalization and why LLMs fail at it
    Shuyue Stella Li, Avinandan Bose, Faeze Brahman, Simon Shaolei Du, Pang Wei Koh, Maryam Fazel, and Yulia Tsvetkov
    arXiv 2025
         Spurious rewards: Rethinking training signals in RLVR
    Rulin Shao*, Shuyue Stella Li*, Rui Xin*, Scott Geng*, Yiping Wang, Sewoong Oh, Simon Shaolei Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer
    arXiv 2025
         Frustratingly simple retrieval improves challenging, reasoning-intensive benchmarks
    Xinxi Lyu, Michael Duan, Rulin Shao, Pang Wei Koh, and Sewon Min
    arXiv 2025
         FlexOlmo: Open language models for flexible data use
    Weijia Shi, Akshita Bhagia, Kevin Farhat, Niklas Muennighoff, Pete Walsh, Jacob Morrison, Dustin Schwenk, Shayne Longpre, Jake Poznanski, Allyson Ettinger, Daogao Liu, Margaret Li, Dirk Groeneveld, Mike Lewis, Wen-tau Yih, Luca Soldaini, Kyle Lo, Noah A Smith, Luke Zettlemoyer, Pang Wei Koh, Hannaneh Hajishirzi, Ali Farhadi, and Sewon Min
    NeurIPS 2025
             Precise information control in long-form text generation
    Jacqueline He, Howard Yen, Margaret Li, Shuyue Stella Li, Zhiyuan Zeng, Weijia Shi, Yulia Tsvetkov, Danqi Chen, Pang Wei Koh, and Luke Zettlemoyer
    NeurIPS 2025
         The Delta Learning hypothesis: Preference tuning on weak data can yield strong gains
    Scott Geng, Hamish Ivison, Chun-Liang Li, Maarten Sap, Jerry Li, Ranjay Krishna, and Pang Wei Koh
    COLM 2025
         EvalTree: Profiling language model weaknesses via hierarchical capability trees
    Zhiyuan Zeng, Yizhong Wang, Hannaneh Hajishirzi, and Pang Wei Koh
    COLM 2025
         ReasonIR: Training Retrievers for Reasoning Tasks
    Rulin Shao*, Rui Qiao*, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Wen-tau Yih, Pang Wei Koh, and Luke Zettlemoyer
    COLM 2025
         Establishing task scaling laws via compute-efficient model ladders
    Akshita Bhagia, Jiacheng Liu, Alexander Wettig, David Heineman, Oyvind Tafjord, Ananya Harsh Jha, Luca Soldaini, Noah A Smith, Dirk Groeneveld, Pang Wei Koh, Jesse Dodge, and Hannaneh Hajishirzi
    COLM 2025
         ParaPO: Aligning language models to reduce verbatim reproduction of pre-training data
    Tong Chen, Faeze Brahman, Jiacheng Liu, Niloofar Mireshghallah, Weijia Shi, Pang Wei Koh, Luke Zettlemoyer, and Hannaneh Hajishirzi
    COLM 2025
         2 OLMo 2 Furious
    Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi
    COLM 2025
         Fluid language model benchmarking
    Valentin Hofmann, David Heineman, Ian Magnusson, Kyle Lo, Jesse Dodge, Maarten Sap, Pang Wei Koh, Chun Wang, Hannaneh Hajishirzi, and Noah A. Smith
    COLM 2025
             The curious case of factuality finetuning: Models' internal beliefs can improve factuality
    Benjamin Newman, Abhilasha Ravichander, Jaehun Jung, Rui Xin, Hamish Ivison, Yegor Kuznetsov, Pang Wei Koh, and Yejin Choi
    arXiv 2025
         A false sense of privacy: Evaluating textual data sanitization beyond surface-level privacy leakage
    Rui Xin*, Niloofar Mireshghallah*, Shuyue Stella Li, Michael Duan, Hyunwoo Kim, Yejin Choi, Yulia Tsvetkov, Sewoong Oh, Pang Wei Koh
    arXiv 2025
         DataDecide: How to predict best pretraining data with small experiments
    Ian Magnusson*, Nguyen Tai*, Ben Bogin*, David Heineman, Jena D Hwang, Luca Soldaini, Akshita Bhagia, Jiacheng Liu, Dirk Groeneveld, Oyvind Tafjord, Noah A Smith, Pang Wei Koh, and Jesse Dodge
    ICML 2025
         NICE: Non-differentiable evaluation metric-based data selection for instruction tuning
    Jingtan Wang, Xiaoqiang Lin, Rui Qiao, Pang Wei Koh, Chuan-Sheng Foo, and Bryan Kian Hsiang Low
    ICML 2025
         OLMoTrace: Tracing language model outputs back to trillions of training tokens
    Jiacheng Liu, Taylor Blanton, Yanai Elazar, Sewon Min, YenSung Chen, Arnavi Chheda-Kothary, Huy Tran, Byron Bischoff, Eric Marsh, Michael Schmitz, Cassidy Trier, Aaron Sarnat, Jenna James, Jon Borchardt, Bailey Kuehl, Evie Cheng, Karen Farley, Sruthi Sreeram, Taira Anderson, David Albright, Carissa Schoenick, Luca Soldaini, Dirk Groeneveld, Rock Yuren Pang, Pang Wei Koh, Noah A Smith, Sophie Lebrecht, Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi, and Jesse Dodge
    ACL 2025
             Large-scale data selection for instruction tuning
    Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, and Pradeep Dasigi
    arXiv 2025
         S4S: Solving for a diffusion model solver
    Eric Frankel, Sitan Chen, Jerry Li, Pang Wei Koh, Lillian J Ratliff, and Sewoong Oh
    ICML 2025
         Metabolically purified human stem cell-derived hepatocytes reveal distinct effects of Ebola and Lassa viruses
    Joseph B Prescott, Kevin J Liu, Angelika Lander, Nicole Min Qian Pek, Sawan Kumar Jha, Marcel Bokelmann, Manali Begur, Pang Wei Koh, Henry Yang, Bing Lim, Kristy Red-Horse, Irving L Weissman, Kyle M Loh, Lay Teng Ang
    bioRxiv 2025
         Exploring how generative MLLMs perceive more than CLIP with the same vision encoder
    Siting Li, Pang Wei Koh, and Simon Shaolei Du
    ACL 2025
         OLMoE: Open Mixture-of-Experts language models
    Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali Farhadi, Noah A Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi
    ICLR 2025
         Language models scale reliably with over-training and on downstream tasks
    Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, and Ludwig Schmidt
    ICLR 2025
         Group-robust sample reweighting for subpopulation shifts via influence functions
    Rui Qiao, Zhaoxuan Wu, Jingtan Wang, Pang Wei Koh, and Bryan Kian Hsiang Low
    ICLR 2025
         Use large language models to promote equity
    Emma Pierson*, Divya Shanmugam*, Rajiv Movva*, Jon Kleinberg*, Monica Agrawal, Mark Dredze, Kadija Ferryman, Judy Wawira Gichoya, Dan Jurafsky, Pang Wei Koh, Karen Levy, Sendhil Mullainathan, Ziad Obermeyer, Harini Suresh, and Keyon Vafa
    NEJM AI 2025
         ICONS: Influence Consensus for Vision-Language Data Selection
    Xindi Wu, Mengzhou Xia, Rulin Shao, Zhiwei Deng, Pang Wei Koh, and Olga Russakovsky
    arXiv 2025
         PLeaS--Merging models with permutations and least squares
    Anshul Nasery, Jonathan Hayase, Pang Wei Koh, and Sewoong Oh
    CVPR 2025
         Negative Token Merging: Image-based adversarial feature guidance
    Jaskirat Singh, Lindsey Li, Weijia Shi, Ranjay Krishna, Yejin Choi, Pang Wei Koh, Michael F Cohen, Stephen Gould, Liang Zheng, and Luke Zettlemoyer
    arXiv 2024
         OpenScholar: Synthesizing scientific literature with retrieval-augmented LMs
    Akari Asai, Jacqueline He*, Rulin Shao*, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle Lo, Luca Soldaini, Sergey Feldman, Mike D'arcy, David Wadden, Matt Latzke, Minyang Tian, Pan Ji, Shengyan Liu, Hao Tong, Bohao Wu, Yanyu Xiong, Luke Zettlemoyer, Graham Neubig, Dan Weld, Doug Downey, Wen-tau Yih, Pang Wei Koh, and Hannaneh Hajishirzi
    arXiv 2024
         Scaling retrieval-based language models with a trillion-token datastore
    Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi, Tim Dettmers, Sewon Min, Luke Zettlemoyer, and Pang Wei Koh
    NeurIPS 2024
         The unmet promise of synthetic training images: Using retrieved real images performs better
    Scott Geng, Cheng-Yu Hsieh, Vivek Ramanujan, Matthew Wallingford, Chun-Liang Li, Pang Wei Koh, and Ranjay Krishna
    NeurIPS 2024
         MEDIQ: Question-asking LLMs for adaptive and reliable clinical reasoning
    Shuyue Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan Ilgen, Emma Pierson, Pang Wei Koh, and Yulia Tsvetkov
    NeurIPS 2024
         Uncertainty of Thoughts: Uncertainty-aware planning enhances information seeking in large language models
    Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei Koh, and Bryan Hooi
    NeurIPS 2024
         Multilingual diversity improves vision-language representations
    Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma, Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, and Ranjay Krishna
    NeurIPS 2024
         DataComp-LM: In search of the next generation of training sets for language models
    Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar
    NeurIPS (Datasets and Benchmarks Track) 2024
         JPEG-LM: LLMs as image generators with canonical codec representations
    Xiaochuang Han, Marjan Ghazvininejad, Pang Wei Koh, and Yulia Tsvetkov
    arXiv 2024
         MoSH: Modeling multi-objective tradeoffs with soft and hard bounds
    Edward Chen, Natalie Dullerud, Thomas Niedermayr, Elizabeth Kidd, Ransalu Senanayake, Pang Wei Koh, Sanmi Koyejo, and Carlos Guestrin
    arXiv 2024
         CopyBench: Measuring literal and non-literal reproduction of copyright-protected text in language model generation
    Tong Chen, Akari Asai, Niloofar Mireshghallah, Sewon Min, James Grimmelmann, Yejin Choi, Hannaneh Hajishirzi, Luke Zettlemoyer, and Pang Wei Koh
    EMNLP 2024
         Data-centric AI in the age of large language models
    Xinyi Xu, Zhaoxuan Wu, Rui Qiao, Arun Verma, Yao Shu, Jingtan Wang, Xinyuan Niu, Zhenfeng He, Jiangwei Chen, Zijian Zhou, Gregory Kang Ruey Lau, Hieu Dao, Lucas Agussurja, Rachael Hwee Ling Sim, Xiaoqiang Lin, Wenyang Hu, Zhongxiang Dai, Pang Wei Koh, and Bryan Kian Hsiang Low
    EMNLP Findings 2024
         Merge to Learn: Efficiently adding skills to language models with model merging
    Jacob Morrison, Noah A. Smith, Hannaneh Hajishirzi, Pang Wei Koh, Jesse Dodge, Pradeep Dasigi
    EMNLP Findings 2024
         Annotation alignment: Comparing LLM and human annotations of conversational safety
    Rajiv Movva, Pang Wei Koh, and Emma Pierson
    EMNLP 2024
         Information-theoretic distillation for reference-less summarization
    Jaehun Jung, Ximing Lu, Liwei Jiang, Faeze Brahman, Peter West, Pang Wei Koh, and Yejin Choi
    COLM 2024
         Using unlabeled data to enhance fairness of medical AI
    Rajiv Movva, Pang Wei Koh, and Emma Pierson
    Nature Medicine 2024
         Reliable, adaptable, and attributable language models with retrieval
    Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, and Wen-tau Yih
    arXiv 2024
         Instructional fingerprinting of large language models
    Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen
    NAACL 2024
         The generative AI paradox: "What it can create, it may not understand"
    Peter West*, Ximing Lu*, Nouha Dziri*, Faeze Brahman*, Linjie Li*, Jena D. Hwang, Liwei Jiang, Jillian Fisher, Abhilasha Ravichander, Khyathi Chandu, Benjamin Newman, Pang Wei Koh, Allyson Ettinger, and Yejin Choi
    ICLR 2024
         Leveraging domain relations for domain generalization
    Huaxiu Yao*, Xinyu Yang*, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn
    ICLR 2024
             Impossibility theorems for feature attribution
    Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been Kim
    Proceedings of the National Academy of Sciences (PNAS) 2024
         Retrieval-based language models using a multi-domain datastore
    Rulin Shao, Sewon Min, Luke Zettlemoyer, and Pang Wei Koh
    NeurIPS Workshop on Distributution Shifts (DistShift) 2023
         OpenFlamingo: An open-source framework for training large autoregressive vision-language models
    Anas Awadalla*, Irena Gao*, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, and Ludwig Schmidt
    arXiv 2023
         FActScore: Fine-grained atomic evaluation of factual precision in long form text generation
    Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi
    EMNLP 2023
         DataComp: In search of the next generation of multimodal datasets
    Samir Yitzhak Gadre*, Gabriel Ilharco*, Alex Fang*, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt
    NeurIPS (Datasets and Benchmarks Track) 2023
             Proximity-informed calibration for deep neural networks
    Miao Xiong, Ailin Deng, Pang Wei Koh, Jiaying Wu, Shen Li, Jianqing Xu, and Bryan Hooi
    NeurIPS 2023
             Are aligned neural networks adversarially aligned?
    Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Anas Awadalla, Pang Wei Koh, Daphne Ippolito, Katherine Lee, Florian Tramer, and Ludwig Schmidt
    NeurIPS 2023
         On the trade-off of intra-/inter-class diversity for supervised pre-training
    Jieyu Zhang*, Bohan Wang*, Zhengyu Hu, Pang Wei Koh, and Alexander Ratner
    NeurIPS 2023
         Out-of-distribution robustness via targeted augmentations
    Irena Gao*, Shiori Sagawa*, Pang Wei Koh, Tatsunori Hashimoto, and Percy Liang
    ICML 2023
         Wild-Time: A benchmark of in-the-wild distribution shift over time
    Huaxiu Yao*, Caroline Choi*, Yoonho Lee, Pang Wei Koh, and Chelsea Finn
    NeurIPS (Datasets and Benchmarks Track) 2022
         Extending the WILDS benchmark for unsupervised adaptation
    Shiori Sagawa*, Pang Wei Koh*, Tony Lee*, Irena Gao*, Sang Michael Xie, Kendrick Shen, Ananya Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea Finn, and Percy Liang
    ICLR 2022
             WILDS: A benchmark of in-the-wild distribution shifts
    Pang Wei Koh*, Shiori Sagawa*, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness, Wei Guo, Berton A. Earnshaw, Imran S. Haque, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang
    ICML 2021
             Just Train Twice: Improving group robustness without training group information
    Evan Zheran Liu*, Behzad Haghgoo*, Annie S. Chen*, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn
    ICML 2021
             Accuracy on the line: On the strong correlation between out-of-distribution and in-distribution generalization
    John Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt
    ICML 2021
         Supporting COVID-19 policy response with large-scale mobility-based modeling
    Serina Chang, Mandy L. Wilson, Bryan Lewis, Zakaria Mehrab, Komal K. Dudakiya, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky, Madhav Marathe, Jure Leskovec
    KDD (Applied Data Science track) 2021
             On the opportunities and risks of foundation models
    Rishi Bommasani, Drew A. Hudson, ..., Pang Wei Koh, ..., and Percy Liang (116 authors, alphabetical within ellipses)
    arXiv 2021
         Selective classification can magnify disparities across groups
    Erik Jones*, Shiori Sagawa*, Pang Wei Koh*, Ananya Kumar, and Percy Liang
    ICLR 2021
             Stronger data poisoning attacks break data sanitization defenses
    Pang Wei Koh*, Jacob Steinhardt*, and Percy Liang
    Machine Learning 2021
             Mobility network models of COVID-19 explain inequities and inform reopening
    Serina Y Chang*, Emma Pierson*, Pang Wei Koh*, Jaline Gerardin, Beth Redbird, David Grusky, and Jure Leskovec
    Nature 2021
             Concept bottleneck models
    Pang Wei Koh*, Thao Nguyen*, Yew Siang Tang*, Steve Mussmann, Emma Pierson, Been Kim, and Percy Liang
    ICML 2020
             An investigation of why overparameterization exacerbates spurious correlations
    Shiori Sagawa*, Aditi Raghunathan*, Pang Wei Koh*, and Percy Liang
    ICML 2020
         ExpBERT: Representation engineering with natural language explanations
    Shikhar Murty, Pang Wei Koh, and Percy Liang
    ACL 2020
         Toward trustworthy AI development: Mechanisms for supporting verifiable claims
    Miles Brundage*, Shahar Avin*, Jasmine Wang*, Haydn Belfield*, Gretchen Krueger*, Gillian Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan Maharaj, Pang Wei Koh, Sara Hooker, ..., Thomas Krendl Gilbert, Lisa Dyer, Saif Khan, Yoshua Bengio, and Markus Anderljung
    arXiv 2020
         Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization
    Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang
    ICLR 2020
         On the accuracy of influence functions for measuring group effects
    Pang Wei Koh*, Kai-Siang Ang*, Hubert H. K. Teo*, and Percy Liang
    NeurIPS 2019
         Temporal FiLM: Capturing long-range sequence dependencies with feature-wise modulations
    Sawyer Birnbaum*, Volodymyr Kuleshov*, Zayd Enam, Pang Wei Koh, Stefano Ermon
    NeurIPS 2019
         Inferring multi-dimensional rates of aging from cross-sectional data
    Emma Pierson*, Pang Wei Koh*, Tatsunori B. Hashimoto*, Daphne Koller, Jure Leskovec, Nicholas Eriksson, and Percy Liang
    AISTATS 2019
             Certified defenses for data poisoning attacks
    Jacob Steinhardt*, Pang Wei Koh*, and Percy Liang
    NeurIPS 2017
         Understanding black-box predictions via influence functions
    Pang Wei Koh and Percy Liang
    ICML 2017
             Localized hepatic lobular regeneration by central-vein-associated lineage-restricted progenitors
    Jonathan M. Tsai, Pang Wei Koh, Ania Stefanska, Liujing Xing, Graham G. Walmsley, Nicolas Poux, Irving L. Weissman, and Yuval Rinkevich
    Proceedings of the National Academy of Sciences (PNAS) 2017
         An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development
    Pang Wei Koh*, Rahul Sinha*, Amira A. Barkal, Rachel M. Morganti, Angela Chen, Irving L. Weissman, Lay Teng Ang, Anshul Kundaje, and Kyle M. Loh
    Scientific Data 2016
         Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types
    Kyle M. Loh*, Angela Chen*, Pang Wei Koh, Tianda Z. Deng, Rahul Sinha, Jonathan M. Tsai, Amira A. Barkal, Kimberle Y. Shen, Rajan Jain, Rachel M. Morganti, Ng Shyh-Chang, Nathaniel B. Fernhoff, Benson M. George, Gerlinde Wernig, Rachel E.A. Salomon, Zhenghao Chen, Hannes Vogel, Jonathan A. Epstein, Anshul Kundaje, William S. Talbot, Philip A. Beachy, Lay Teng Ang, and Irving L. Weissman
    Cell 2016
         Denoising genome-wide histone ChIP-seq with convolutional neural networks
    Pang Wei Koh*, Emma Pierson*, and Anshul Kundaje
    Intelligent Systems for Molecular Biology (ISMB) / Bioinformatics 2017
             Dissecting an online intervention for cancer survivors
    Zhenghao Chen, Pang Wei Koh, Philip L. Ritter, Kate Lorig, Erin O'Carroll Bantum, and Suchi Saria
    Health Education & Behavior 2014
         Peer and self assessment in massive online classes
    Chinmay Kulkarni, Pang Wei Koh, Huy Le, Daniel Chia, Kathryn Papadopoulos, Justin Cheng, Daphne Koller, and Scott Klemmer
    ACM Transactions on Computer-Human Interaction 2013
         Identifying genetic drivers of cancer morphology
    Pang Wei Koh, Andrew Beck, and Daphne Koller.
    Undergraduate honors thesis 2012
             Sparse filtering
    Jiquan Ngiam, Pang Wei Koh, Zhenghao Chen, Sonia Bhaskar, and Andrew Y. Ng
    NeurIPS 2011
             Learning deep energy models
    Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng
    ICML 2011
         On random weights and unsupervised feature learning
    Andrew Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng
    ICML 2011
         Tiled convolutional neural networks
    Quoc V. Le, Jiquan Ngiam, Zhenghao Chen, Daniel Chia, Pang Wei Koh, and Andrew Y. Ng
    NeurIPS 2010
         Lower bound on the time complexity of local adiabatic evolution
    Zhenghao Chen, Pang Wei Koh, and Zhao Yan
    Physical Review A 2006